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A model of static boson–fermion stars with spherical symmetry based on the
scalar–tensor theory of gravity with a massive dilaton field is investigated numeri-
cally. Since the radius of the star isa priori an unknown quantity, the corresponding
boundary value problem is treated as a nonlinear spectral problem with a free in-
ternal boundary. The continuous analogue of Newton method is used to solve this
problem. Information about basic geometric functions and the functions describing
the matter fields which build the star is obtained. From a physical point of view
the main result is that the structure and properties of the star in the presence of a
massive dilaton field depend essentially on both its fermionic and bosonic comp-
onents. c© 2001 Academic Press
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1. INTRODUCTION

The most natural and promising generalizations of general relativity are the scalar–tensor
theories of gravity [1–4]. In these theories gravity is mediated not only by a tensor field (the
metric of space–time) but also by a scalar field (the dilaton). The scalar–tensor theories of
gravity contain arbitrary functions of the scalar field that determine the gravitational “con-
stant” as a dynamic variable and the strength of the coupling between the scalar field and
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matter. It should be stressed that specific scalar–tensor theories of gravity arise naturally as
a low-energy limit of the string theory [5–13] which is the most promising modern model
of the unification of all fundamental physical interactions.

If the string theory and its low-energy limit are relevant to the real world, then the dilaton
must be massive [14]. Unfortunately, our current understanding of how the dilaton acquires
mass is primitive, which is a result of our lack of understanding of supersymmetry breaking.
At present, we do not have a model of how the dilaton mass is generated in the string theory.
Besides the mass term for the dilaton field we may consider the general case of arbitrary
dilaton potential, describing its nonlinear self-interaction.

From a physical point of view, it is important to know how the dilaton mass and, in
general, the dilaton potential influence the structure and stability of compact objects such
as neutron stars, boson stars, and mixed fermion–boson stars.

It is known that the predictions of scalar–tensor theories of gravity with a massless dilaton
may differ drastically from those of general relativity. For example, the phenomenon of
“spontaneous scalarization” was discovered recently [15, 16] as a non-perturbative strong
field effect in a massive neutron star. The existence of this effect poses some important
physical questions [17]. That is why it is natural to ask whether spontaneous scalarization
will occur when the dilaton is massive. In recent years, the boson stars in scalar–tensor
theories of gravity with a massless dilaton have been widely studied both analytically
and numerically (see, for example, [18–25]). The study of boson stars in the case of a
massive dilaton is physically interesting and may be important for the understanding of
their formation in the early universe.

The investigation of the compact objects in generalized scalar–tensor theories of gravity
helps us understand them better. On the other hand, the investigation of matter under extreme
conditions like those in neutron stars may demonstrate new phenomena and new features
of specific scalar–tensor theories of gravity, originating from the low-energy limit of the
string theory. Thus, for the first time we may be able to reach theoretical indications of a
physical manifestation of the string theory in the real world [26].

In the present paper we develop a direct numerical method for solving the equations
of the general scalar–tensor theories of gravity including a dilaton potential term for the
general case of mixed boson–fermion stars.

The physical motivation for considering mixed boson–fermion stars is connected with
the fact that many present-day stars are of primordial origin, formed from an original gas
of fermions and bosons in the early universe. That is why it should be expected that they
are a mixture of both fermions and bosons in different proportions. The study of such
mixed objects is a new interesting problem, whose investigation was started in Ref. [27].
There exist different candidates for boson fields in stars, such as the Higgs field of the
standard model or the axion field, which is a pseudoscalar partner of the dilaton in the
superstring theory. They are an unavoidable part of modern physics; nevertheless, up to now
we have no experimental evidence for their existence. Taking into account that according
to the modern understanding of the initial state of the universe these fields must have been
present at significant intensities during the Big Bang, one has to expect some part of these
fields to be present in stars of primordial origin. The study of new observable effects of
boson fields in such mixed stars may open new ways of discovering the existence of the
above hypothetical fields, which at present are the most intriguing new objects in modern
physics.
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In the Einstein frame the field equations in the presence of fermion and boson matter are

G j
i = κ∗

(
BT j

i + FT j
i

)+ 2∂iϕ∂
jϕ − ∂ lϕ∂lϕδ

j
i +

1

2
U (ϕ)δ j

i ,

∇i∇ iϕ + 1

4
U ′(ϕ) = −κ∗

2
α(ϕ)(BT + FT),

(1)

∇i∇ i9 + 2α(ϕ)∂ lϕ∂l9 = −2A2(ϕ)
∂W̃

∂9+
,

∇i∇ i9+ + 2α(ϕ)∂ lϕ∂l9
+ = −2A2(ϕ)

∂W̃

∂9
,

where∇i is the Levi–Civita connection with respect to the metricgi j (i = 0, . . . ,3; j =
0, . . . ,3). The constantκ∗ is given byκ∗ = 8πG∗, whereG∗ is the bare Newtonian gravita-
tional constant. The physical gravitational “constant” isG∗A2(ϕ), whereA(ϕ) is a function
of the dilaton fieldϕ depending on the concrete scalar–tensor theory of gravity. For example,
in the framework of the Brans–Dicke model we haveA(ϕ) = exp( ϕ√

2ωB D+3
), whereωB D is

a parameter.
The dilaton potentialU (ϕ) can be written in the formU (ϕ) = m2

DV(ϕ), wheremD is
the dilaton mass andV(ϕ) is a dimensionless model function ofϕ.

The complex scalar field9 describes bosonic matter, while9+ is its complex conjugated
function. The quantityW̃(9+9) is the potential of the boson field, which can be chosen in
the form

W̃(9+9) = −m2
B

2
9+9 − 1

4
3̃(9+9)2,

where3̃ is a parameter.
The scalar functionα(ϕ) = d

dϕ [ln A(ϕ)] determines the strength of the coupling between
the dilaton fieldϕ and matter.

The quantitiesBT and FT are correspondingly the traces of the energy–momentum
tensors of the fermionic matterFT j

i and the bosonic matterBT j
i . We note that in the present

article we consider the fermionic matter only in macroscopic approximation, i.e., after
averaging quantum fluctuations of the corresponding fermion fields. Thus, we actually
consider standard classical relativistic matter.

The explicit forms of the tensors mentioned are correspondingly

BT j
i =

1

2
A2(ϕ)(∂i9

+∂ j9 + ∂i9∂
j9+)

− 1

2
A2(ϕ)[∂l9

+∂ l9 − 2A2(ϕ)W̃(9+9)]δ j
i , (2)

FT j
i = (ε + p)ui u

j − pδ j
i . (3)

Here, the energy density and the pressure of the fermionic fluid in the Einstein frame are
ε = A4(ϕ)ε̃ andp = A4(ϕ) p̃, whereε̃ and p̃ are the physical energy density and pressure.
Instead of giving the equation of state of the fermionic matter in the formp̃ = p̃(ε̃), it is
more convenient to write it in the parametric form

ε̃ = ε̃0g(µ), p̃ = ε̃0 f (µ), (4)
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whereε̃0 is a properly chosen dimensional constant,µ is the dimensionless Fermi momen-
tum, and f (µ) andg(µ) are given functions (see below).

The physical four-velocity of the fermionic fluid is denoted byui .
The field equations, together with the Bianchi identities, lead to the local conservation

law of the energy–momentum of matter:

∇ j
FT j

i = α(ϕ)FT∂iϕ. (5)

Hereafter, we will assume a static and spherically symmetric mixed boson–fermion star
in asymptotically flat space–time. This means that the metricgi j has the form

ds2 = eν(r ) dt2− eλ(r ) dr2− r 2(dθ2+ sin2 θ dφ2), (6)

wherer, θ, φ are the usual spherical coordinates.
The field configuration is static when the boson field9 satisfies the condition

9 = σ̃ (r )eiωt .

Here,ω is a real number and ˜σ(r ) is a real function.
Taking into account the above-stated assumption, the system of field equations is reduced

to a system of ordinary differential equations (ODEs). Before writing the system explic-
itly, we introduce a rescaled (dimensionless) radial coordinate byr → mBr , r ∈ [0,∞),
wheremB is the mass of the bosons (a prime will denote differentiation with respect to the
dimensionless radial coordinater ).

We also define the following dimensionless quantities:

Ä = ω

mB
, σ = √κ∗σ̃ , 3 = 3̃

κ∗m2
B

, γ = mD

mB
.

The components of the energy–momentum tensors for the fermionic and bosonic matter,
written in terms of the dimensionless quantities, are correspondingly

FT0
0 = bA4(ϕ)g(µ), FT1

1 = FT2
2 = −bA4(ϕ) f (µ), (7)

BT0
0 =

1

2
Ä2A2(ϕ)e−νσ 2(r )+ 1

2
A2(ϕ)e−λσ ′ 2− A4(ϕ)W(σ 2), (8)

BT1
1 = −

1

2
Ä2A2(ϕ)e−νσ 2(r )− 1

2
A2(ϕ)e−λσ ′ 2− A4(ϕ)W(σ 2), (9)

BT2
2 = −

1

2
Ä2A2(ϕ)e−νσ 2(r )+ 1

2
A2(ϕ)e−λσ ′ 2− A4(ϕ)W(σ 2). (10)

The parameterb = κ∗ε̃0/m2
B describes the relation between the Compton length of the

dilaton and the usual radius of the neutron star in general relativity.
It is necessary to note that two physically interesting borderline cases of pure bosonic and

pure fermionic stars are formally contained in the above general system (1). For example,
the model of pure bosonic stars can be obtained from (1) by letting the tensorFT j

i be zero,
while the pure fermionic stars correspond to the field9 ≡ 0. The case of pure bosonic stars
in the scalar–tensor theories of gravity with a massive dilaton has already been discussed
in [28]. In the present paper we consider mixed boson–fermion stars.
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2. FORMULATION OF THE PROBLEM

Under the physical assumptions we have made, the field equations (1) can be reduced to
a system of ODEs. From a mathematical point of view it is more convenient for all ODEs
to be of second order. That is why we first solve the Einstein equationG1

1 for eλ,

eλ = 1+ r ν ′ − r 2ϕ′2− 1
2 A2(ϕ)r 2σ ′2

1− r 2
[

FT1
1 + 1

2γ
2V(ϕ)− 1

2Ä
2A2(ϕ)e−νσ 2− A4(ϕ)W(σ 2)

] ,
as a function of the quantitiesν(r ), ν ′(r ),σ(r ),σ ′(r ),ϕ(r ),ϕ′(r ), and the spectral parameter
Ä, and then substitute the above expression into the other Einstein equations. In this way,
in terms of the dimensionless quantities, the system of the field equations (1) is reduced to
the following system of ODEs:

ν ′′ + ν
′

r
=
[
−ν
′

r
+ (FT0

0 − FT1
1 − 2FT2

2 + BT0
0 − BT1

1 − 2BT2
2

)
− γ 2V(ϕ)+ ν

′r
2
(T1+ γ 2V(ϕ))

]
eλ, (11)

ϕ′′ + ϕ
′

r
=
[
−ϕ
′

r
+ α(ϕ)

2
(FT + BT)

+ 1

4
γ 2V ′(ϕ)+ ϕ

′r
2
(T1+ γ 2V(ϕ))

]
eλ, (12)

σ ′′ + σ
′

r
= −2α(ϕ)ϕ′σ ′ +

[
−σ

′

r
− 2A2(ϕ)W′(σ 2)σ

−Ä2e−νσ + σ
′r
2
(T1+ γ 2V(ϕ))

]
eλ. (13)

In the above equations, the potential of the bosonic matterW has the form

W(σ 2) = −1

2

(
σ 2+ 1

2
3σ 4

)
,

and we suppose thatW′(σ 2) ≡ dW
d(σ 2)

. Similarly, we setV ′(ϕ) ≡ dV
dϕ .

The quantityT1 depends on the components of the energy–momentum tensors of the
fermionic and bosonic matter (7)–(9):

T1 = FT0
0 + FT1

1 + BT0
0 + BT1

1 .

The quantitiesBT and FT represent the traces of these tensors and are defined by the
formulae

BT = −Ä2A2(ϕ)e−νσ 2+ A2(ϕ)e−λσ ′ 2− 4A4(ϕ)W(σ 2),

FT = bA4(ϕ)[g(µ)− 3 f (µ)].

Correspondingly, the conservation law (5) can be expressed as

µ′ = −g(µ)+ f (µ)

f ′(µ)

[
ν ′

2
+ α(ϕ)ϕ′

]
. (14)
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The fermionic matter functionsf (µ) andg(µ) in the above relations have the form

f (µ) = 1

8
[(2µ− 3)

√
µ+ µ2+ 3 ln(

√
µ+

√
1+ µ)], (15)

g(µ) = 1

8
[(6µ+ 3)

√
µ+ µ2− 3 ln(

√
µ+

√
1+ µ)]. (16)

Let us now complete the problem by adding proper boundary conditions (BCs) to the
system of differential equations (11)–(14).

The asymptotic flatness means that the functionν(r )→ 0 whenr→∞. On the other
hand, the nonsingularity condition at the center of the star requires the derivativeν ′(0)=
0. The same condition in relation to the dilaton fieldϕ(r ) implies that the derivativeϕ′(0)= 0.
At the same time, the functionϕ(r ) at the asymptotic infinity (r →∞) must beϕ∞= 0
as it is required by the asymptotic flatness. The nonsingularity of the bosonic densityσ(r )
at the center of the star requires the derivativeσ ′(0) = 0. We need finite mass for the star,
which impliesσ(r )→ 0 whenr →∞. In addition, the central valueσc = σ(0) must be
given. Concerning the fermionic fluid, we have to give the central density ˜εc = ε̃(0) or,
equivalently, the central valueµc = µ(0).

It should be noted that for the physically relevant equation of state of the fermionic matter
there must be a pointr = Rs <∞ where the pressure of the fermionic matter vanishes;
i.e., Rs is the radius of the fermionic part of the star.

As a conclusion, from the above-mentioned physical assumptions, we can formulate the
following linear boundary conditions (BCs) for the quantities under consideration:

ν ′(0) = 0, ν(∞) = 0; (17)

ϕ′(0) = 0, ϕ(∞) = 0; (18)

σ ′(0) = 0, σ (∞) = 0; (19)

µ(0) = µc. (20)

Here, we denote(·)(∞) def= limr→∞(·)(r ).
Apart from the unknown functionsν(r ), σ(r ), ϕ(r ), andµ(r ), Eqs. (11)–(14) also in-

clude two unknown real parameters,Rs > 0 andÄ. However, the seven BCs (17)–(20) are
insufficient for their computation. In order to determine these parameters, we have to use
additional conditions. In other words, the problem may be considered a nonlinear eigen-
value problem, whereRs andÄ are considered “eigenvalues.” For this purpose, further on
we use two physically clear additional conditions.

The first one, given by the relation

σ(0) = σc, (21)

determines the densityσc ≥ 0 of the bosonic matter in the star’s center. The second one,

µ(Rs) = 0, 0< Rs <∞, (22)

describes the condition that the density of the fermionic matter must vanish at the radius of
the star.
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Finally, we note that all the functionsν(r ), σ(r ), andϕ(r ) are defined on the whole
real half-liner ∈ [0,∞). It is easy to see that these functions are smooth in this interval
including the pointr = Rs, whereas the fermionic densityµ(r ) is defined and smooth only
inside the star; i.e.,r ∈ [0, Rs].

3. METHOD OF SOLUTION

For solving the above formulated nonlinear eigenvalue problem the continuous analogue
of Newton method CANM; (see [29–33] and comprehensive surveys [34, 35]) is applied.
For convenience, a brief description of the CANM can be found in the Appendix.

The presence of thea priori unknown quantityRs, however, is an obstacle to the direct
use of CANM; the problem is the unknown internal boundaryRs. In order to overcome this
obstacle, we introduce a new scaled coordinate,x = r/Rs. As a result, the physical domain
r ∈ [0,∞)maps to the domainx ∈ [0,∞), and the star’s radiusr = Rs maps into the fixed
point x = 1. Then the BC (22) forµ(x) becomes

µ(1) = 0. (23)

Let x1 and x2 be two arbitrary points in the internal domain [0, 1]. We note that for
the arbitrary functionsf (µ), g(µ), andα(ϕ), Eq. (14) has a first integral, which can be
presented as

µ2∫
µ1

f ′(µ)
f (µ)+ g(µ)

dµ+ 1

2
(ν2− ν1)+ ln

A(ϕ2)

A(ϕ1)
= 0,

whereν1, ν2, ϕ1, ϕ2, µ1, µ2 stand for the functionsν(x), ϕ(x), µ(x) at the pointsx1 and
x2, respectively. Thus, for the model of the fermionic matter described by conditions (15)
and (16) we simply get the algebraic equation

ln

[
(1+ µ2)A2(ϕ2)

(1+ µ1)A2(ϕ1)

]
+ ν2− ν1 = 0. (24)

For convenience, we introduce the vectory(x) = {ν(x), ϕ(x), σ (x)}. Then the first three
equations (11)–(13) of the problem and the corresponding BCs (17)–(19) can be rewritten
as

−xy′′ − y′ + F = 0, (25)

y′(0) = 0, y(∞) = 0, (26)

whereF = F(x, y, y′, µ, Rs, Ä) is a 3D vector consisting of the right-hand sides (RHSs)
of Eqs. (11)–(13) multiplied byR2

sx. Differentiation with respect to the new independent
variablex is denoted by(.)′. In the linear case, the advantages of such representation of the
radial operator are discussed in [36].

Following CANM, we introduce a “time-like” parameter,t ∈ [0,∞), and assume the
unknown quantities depend ont as well:y = y(x, t), Rs = Rs(t),Ä = Ä(t). Let us sup-
pose that the functionµ = µ(x) is known (see below). Then the CANM equations [35]
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corresponding to (25) and (26) become

−xz′′ +
(
∂F
∂y′
− E

)
z′ + ∂F

∂y
z+

(
2

Rs
F+ ∂F

∂Rs

)
ρ + ∂F

∂Ä
ω = xy′′ + y′ − F, (27)

z′(0) = −y′(0), z(∞) = −y(∞), (28)

whereE is an identity 3× 3 matrix and

ẏ = z, Ṙs = ρ, Ä̇ = ω. (29)

The respective Frech´et derivatives at the point(y, Rs, Ä) are∂F/∂(.) and the dot in (29)
and below denotes differentiation with respect to “time”t .

The solutionz(x) of the above equation is sought as a linear function of the derivatives
ρ andω,

z= u+ ρv+ ωw, (30)

whereu(x), v(x), andw(x) are assumed to be new unknown 3D vector functions ofx.
Substituting for them in Eq. (27), we obtain the following three vector ODEs of second
order with respect to these quantities:

−xu′′ − u′ + ∂F
∂y′

u′ + ∂F
∂y

u = xy′′ + y′ − F, (31)

−xv′′ − v′ + ∂F
∂y′

v′ + ∂F
∂y

v = −
(

2

Rs
F+ ∂F

∂Rs

)
, (32)

−xw′′ − w′ + ∂F
∂y′

w′ + ∂F
∂y

w = − ∂F
∂Ä

. (33)

The above three equations are coupled with six BCs,

u′(0) = −y′(0), u(∞) = −y(∞), (34)

v′(0) = 0, v(∞) = 0, (35)

w′(0) = 0, w(∞) = 0, (36)

which are obtained from BCs (28), substituting for them with decomposition (30) also. Let
us emphasize that the above equations (31)–(36) have equivalent structures of the left-hand
sides, which essentially facilitates their numerical treatment.

In order to calculate the derivativesρ andω, we apply CANM for the first additional BC
(21). This gives

σ̇ (0) = σc − σ(0).

One more condition is required. Unfortunately, the second additional condition (23) is not
convenient for this purpose because knowledge about decomposition (30) concerning the
functionµ(x) is not available. We avoid this difficulty by using the integral (24) forx1 ≡ 0
andx2 ≡ 1. Taking into account conditions (20) and (23), we obtain an algebraic equation
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with respect to the quantitiesν(0), ν(1),ϕ(0),ϕ(1).After applying CANM to this equation,
we get

ν̇(1)− ν̇(0)+ 2
A′[ϕ(1)]
A[ϕ(1)]

ϕ̇(1)− 2
A′[ϕ(0)]
A[ϕ(0)]

ϕ̇(0)

= ln(1+ µc)− [ν(1)− ν(0)] − 2 ln
A[ϕ(1)]

A[ϕ(0)]
= 0,

where the abbreviationA′ denotes the derivative of the functionA with respect to the
argumentϕ.

Let us now eliminate all the derivatives in relation to “time”t by means of decomposition
(30). As a result, we receive the linear system of algebraic equations

a1ρ + b1ω = c1,
(37)

a2ρ + b2ω = c2

with respect to the unknown derivativesρ andω. The coefficients in formulae (37) are given
by

a1 = v1(1)− v1(0)+ 2
A′[ϕ(1)]
A[ϕ(1)]

v2(1)− 2
A′[ϕ(0)]
A[ϕ(0)]

v2(0),

b1 = w1(1)− w1(0)+ 2
A′[ϕ(1)]
A[ϕ(1)]

w2(1)− 2
A′[ϕ(0)]
A[ϕ(0)]

w2(0),

c1 = ln(1+ µc)− [ν(1)− ν(0)] − 2
A′[ϕ(1)]
A[ϕ(1)]

u2(1)+ 2
A′[ϕ(0)]
A[ϕ(0)]

u2(0)

− 2 ln
A[ϕ(1)]

A[ϕ(0)]
− u1(1)+ u1(0),

a2 = v3(0), b2 = w3(0), c2 = σc − σ(0)− u3(0).

Obviously, the explicit form of the coefficients in system (37) depends on the concrete
choice of functionsf (µ) andg(µ).

4. GENERAL SEQUENCE OF THE ALGORITHM

We discretize the continuous time-like parametert ∈ [0,∞) as tk+1 = tk + τk, t0 = 0,
wherek = 0, 1, 2, . . . denotes the number of iterations, and the time stepτk is generally
assumed to be a variable quantity. Next, we use the Euler difference scheme [34] to approx-
imate the time derivatives in Eqs. (29). Then we can write

yk+1(x) = yk(x)+ τk[uk(x)+ ρkvk(x)+ ωkwk(x)],

Rs,k+1 = Rs,k + τkρk, (38)

Äk+1 = Äk + τkωk.

Let us suppose that the functionsνk(x), ϕk(x), σk(x), µk(x) and the parametersRs,k, Äk

are given. We solve the linear BVP (31)–(33) and, thus, we compute the functionsuk(x),
vk(x), wk(x). Next, to obtain the derivativesρk andωk we solve system (37). After that,
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using decomposition (38) for a selectedτk, we calculate the functionsνk+1(x), ϕk+1(x),
σk+1(x), the radius of the starRs,k+1, and the quantityÄk+1 as well at the new stagek+ 1.
In the end, we calculate the functionµk+1(x) at the new stage, according to the recurrent
formula, which can be obtained immediately from the first integral (24).

For every iterationk an optimal time stepτopt is determined in accordance with the
Kalitkin–Ermakov formula [33, 37],

τopt = δ(0)

δ(0)+ δ(1) , (39)

where the residualδ(τ ) is represented as

δ(τk) = max[δ f , (Rs,k + τkρk)
2, (Äk + τkωk)

2]

andδ f is the Euclidean residual of RHS of Eq. (31). Formula (39) provides approximately
the minimal value of the residual for the current solution, given by (38).

The criterion for termination of the iterations isδ(τopt) < ε, whereε ∼ 10−8–10−12.
Then, for the sought solutions we setν(x) ≡ νk+1(x), ϕ(x) ≡ ϕk+1(x), σ(x) ≡ σk+1(x),
Rs ≡ Rs,k+1,Ä ≡ Äk+1.

The use of the standard programs available, for example, via the Internet [40] to solve
numerically the linear BVPs (31)–(36) is unhandy for many reasons. Because of that, we
employ the spline-collocation scheme.

We introduce a nonuniform grid,

1 : xi+1 = xi + hi , i = 0, 1, . . . , Ns, Ns+1, . . . , N − 1, x0 = 0, xN = X∞,

on the intervalx ∈ [0, X∞], condensing to the pointsx = 0 andx = 1. Here,X∞ is the
“actual infinity,” Ns is the number of the nodex = 1, N is the full number of the subintervals,
andhi is the grid step. We will seek approximate solutions of the above linear BVPs as a
cubic spline on the grid1. Namely, forx ∈ [xi , xi+1], i = 0, . . . , N − 1, we set

U(x) = ψ1(θ)Ui + ψ2(θ)M i + ψ3(θ)Ui+1+ ψ4(θ)M i+1. (40)

In the above formula the relative coordinateθ = (x − xi )/hi and the known functions
ψl (θ), l = 1, . . . ,4, are the coefficients of the spline. For simplicity in the last formula,
we introduced the 3× 3 matricesU andM , consisting of the coordinates of the vectors
u, v,w from (30) and their first moments at the spline nodesxi , i = 0, . . . , N. According to
the collocation method [38], in every subinterval [xi , xi+1] , i = 0, . . . , N − 1, the system
(31)–(33) is satisfied at the corresponding Gaussian pointsθ1 = 1/2−√3/6 andθ2 =
1/2+√3/6. This kind of discretization yields an algebraic system with respect to the
functions and their moments at the spline nodes. The corresponding matrix has an almost
block-diagonal structure (see [38]). Therefore, at thei th block (i = 1, . . . , N − 1) the
collocation equations have the form

(∥∥a1
kn

∥∥ ∥∥b1
kn

∥∥ ∥∥c1
kn

∥∥ ∥∥d1
kn

∥∥∥∥a2
kn

∥∥ ∥∥b2
kn

∥∥ ∥∥c2
kn

∥∥ ∥∥d2
kn

∥∥
)

Ui

M i

Ui+1

M i+1

 =
(

e1
i

e2
i

)
,
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whereei is the vector of RHSs of Eqs. (31)–(33) at the collocation nodes, while the super-
script corresponds to the number of these nodes. Here,

aj
kn = −

(
ξi j

h2
i

ψ̈1 j +
1

hi
ψ̇1 j

)
δkn+

(
∂Fk

∂y′n

)
i j

1

hi
ψ̇1 j +

(
∂Fk

∂yn

)
i j

ψ1 j ,

bj
kn = −

(
ξi j

hi
ψ̈2 j + ψ̇2 j

)
δkn+

(
∂Fk

∂y′n

)
i j

ψ̇2 j +
(
∂Fk

∂yn

)
i j

hiψ2 j ,

cj
kn = −

(
ξi j

h2
i

ψ̈3 j +
1

hi
ψ̇3 j

)
δkn+

(
∂Fk

∂y′n

)
i j

1

hi
ψ̇3 j +

(
∂Fk

∂yn

)
i j

ψ3 j ,

d j
kn = −

(
ξi j

hi
ψ̈4 j + ψ̇4 j

)
δkn+

(
∂Fk

∂y′n

)
i j

ψ̇4 j +
(
∂Fk

∂yn

)
i j

hiψ4 j ,

for k = 1, 2, 3, n = 1, 2, 3, j = 1, 2,

and the quantitiesξi j = xi + θ j hi are the absolute coordinates of the collocation points.
The derivatives of the spline coefficientsψl with respect to the relative coordinateθ are
dotted.

The dimensions of the first and last blocks in the global matrix are greater, since we add
two matrix rows corresponding, respectively, to the left and right BCs.

Formula (40) is also used for the approximation of the RHSs of system (31)–(33) in the
collocation points.

The spline-difference schemes of this kind have a high order of approximationO(h̄4) ,
whereh̄ = max{hi }, i = 0, . . . , N.

It is clear that to solve all three algebraic systems, corresponding to the linear BVPs
(31)–(36) at every iteration, only oneLU -decomposition is necessary.

Depending on the initial values of the governing physical parameters, the number of
iterations varies approximately in the range 4–16. If we vary a solution as a function of
one of the parametersµc, σc, γ , 3, or b, then we use the previous solution as an initial
approximation for computing the next one.

5. RESULTS AND DISCUSSION

In order to be specific in the present article, we focus our attention on a concrete scalar–
tensor gravity model, characterized by the functions

A(ϕ) = exp

(
ϕ√
3

)
and V(ϕ) = (1− [ A(ϕ)]−1)2.

For more details concerning this gravitational model, we refer the reader to the recent paper
[39] and the references therein.

The order of approximation of the used spline-difference scheme is verified by the Runge
rule. The Runge rule is presented by the formula

yh − yh
2

yh
2
− yh

4

= 2p,

wherep is Runge’s number andyh, yh/2, yh/4 are the values of the grid functiony at the given
node, computed on meshes with stepsh, h/2, andh/4. In our casep must be approximately
equal to 4.
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TABLE I

Data for Checking the Runge Rule

h ν(1) ϕ(1) σ (1) Rs Ä

1
16

−1.0059230404 −0.0471137759 0.4777335163 1.1609111685 0.8006662485
1
32

−1.0059334054 −0.0471120738 0.4777483180 1.1608888836 0.8006671950
1
64

−1.0059342032 −0.0471119781 0.4777490917 1.1608875328 0.8006672467

p 3.61 4.22 4.37 4.06 4.28

In Table I the values of the sought grid functions at the pointx = 1, the corresponding
radius of starRs, and the quantityÄ for σc = 0.8, µc = 1,3 = 0.01, γ = 1, b = 1, and
X∞ = 128 are shown.

It is obvious that the Runge relationship is satisfied for both the functions and the eigen-
valuesRs andÄ.

The correctness of the spline-difference scheme is verified through appropriate numerical
experiments consisting of both grid doubling and doubling of the “actual infinity.” For this
purpose, uniform meshes are used with numbers of the spline nodesN = 256, 512, 1024,
2048, respectively. It turns out that the relative error between the values of the functions
ν(x), ϕ(x), andσ(x) varies in the range 0.1–1% when the mesh is “coarse” (N = 256,
512) and in the range 0.003–0.02% when the mesh is “fine” (N = 1024, 2048). Similar
experiments are carried out with the “actual infinity”X∞ = 64, 128, 256. It is interesting
to note that the relative error between the set functionsϕ(x) andσ(x) is very small (less
than 10−4%), while the functionν(x) is more sensitive with respect to the choice of the
quantity X∞. This fact is fully explainable if we take into account that the functionν(x)
decreases slowly at infinity compared to the other functions. (Theoreticallyν(x) ∼ − M

Rsx
whenx→∞. Here, the quantityM is the total star mass.) The computed values of the
derivativeν ′(X∞) as a function of the “actual infinity”X∞ are presented in Table II. It
is easy to see the relationshipν ′(X∞) = C

X2∞
, where the constantC > 0 depends on the

concrete solution (for the above solutionC ≈ 1.133).
All governing parameters are varied in wide physically admissible ranges. As initial

distributions of the functionsν(x), ϕ(x), σ(x), andµ(x) both analytic and numerical
approximations are used.

Results concerning a family of solutions will be considered below. They are obtained for
the following fixed values of the parameters:µc = 0.5,3 = 10, γ = 10, b = 1, and the
“actual infinity” X∞ = 128, when the parameterσc runs through the interval [0.1, 0.9].

Figure 1 presents the dependence of the functionν(x) on the dimensionless coordinatex
for three different values of the central bosonic densityσc. It is seen that whenσc increases,
the absolute value ofν(x) as a whole decreases and at great distances (from 3 star radii
whenσc = 0.1 to 45 star radii in the caseσc = 0.9) from the star’s center approaches zero
asymptotically. The qualitative behaviour of the three curves, however, remains the same.

TABLE II

Asymptotic Behaviour of the Derivativeν ′ at the “Actual Infinity” X∞

X∞ 32 64 128 256 512

ν ′(X∞) 1.07246× 10−3 2.63721× 10−4 6.53945× 10−5 1.62825× 10−5 4.06241× 10−6
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FIG. 1. The functionν(x) in dependence on the parameterσc: “s”-σc = 0.1; “4”-σc = 0.5; “,”-σc = 0.9.

Such behaviour is natural and should be expected if the differential equation (11) forν(r )
is taken into account. From a physical point of view, this behaviour is natural also because
the function exp( ν(x)2 ) is related to the gravitational potential.

Figure 2 presents the dependence of the dilaton fieldϕ(x)on the dimensionless coordinate
x for four different values ofσc. The qualitative behaviour of the fieldϕ(x) as a function of
σc is the following. For small values whenσc increases, the dilaton field around the center of
the star decreases. Then, after some critical valueσ ∗c the behaviour ofϕ(x) is changed and
ϕ(x) around the center of the star begins to increase with the increase ofσc. The cause of the
described behaviour is the presence of the termBT on the RHS of Eq. (12). For sufficiently
small values of the densityσc the termBT is negative and has a dominant contribution with
respect to the termFT . For the sufficiently large central valueσc (σc ≥ σ ∗c ), the termBT
changes its sign and amplifies the contribution ofFT , leading to the increase of the function
ϕ(x).

From a physical point of view, the described behaviour of the dilaton field (and conse-
quently the behaviour of the physical gravitational “constant”G∗A2(ϕ) ) for the central
valuesσc > σ ∗c seems to be strange. In order to clarify this situation, we have to take into
account that in the rangeσc > σ ∗c (for the fixed value of the central fermionic densityµc)

FIG. 2. The dilaton potentialϕ(x) as a function of the parameterσc: “s”-σc = 0.1; “4”-σc = 0.5; “h”-
σc = 0.7; “,”-σc = 0.9.



266 BOYADJIEV ET AL.

FIG. 3. The bosonic densityσ(x) as a function of the parameterσc: “s”-σc = 0.1; “4”-σc = 0.5; “,”-
σc = 0.9.

the star is unstable and, therefore, the mentioned range is not physically relevant. Such
behaviour has to be considered only as an interesting mathematical fact. In the domain of
stability 0< σc < σ ∗c , as we have already seen, the dilaton fieldϕ(x) has normal physical
behaviour—it decreases when the parameterσc increases.

The dependence of the bosonic densityσ(x) on the dimensionless coordinatex for three
different values ofσc is presented in Fig. 3. The qualitative behaviour is the same for all
three different values ofσc. It approaches zero at infinity (rapidly whenσc = 0.1 and more
slowly whenσc increases).

In Fig. 4 the dependence of the fermionic densityµ(x) on the dimensionless coordinate
x is presented for three different values ofσc. The qualitative behaviour of the three curves
is similar. In agreement with the initial assumption, it is nontrivial only within the star. It is
seen that when the value ofσc increases, the densityµ(x) increases as a whole, too. This fact
is related to the effect of an increase of the gravitational field with the increase ofσc—the
star becomes more compact, which leads to the greater density of matter, respectively to
the functionµ(x). The same may be seen in Fig. 5; when the central valueσc increases, the
radius of the starRs decreases about 10 times.

FIG. 4. The fermionic densityµ(x) as a function of the parameterσc: “s”-σc = 0.1; “4”-σc = 0.5; “,”-
σc = 0.9.
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FIG. 5. The radius of the starRs and the quantityÄ exp(− ν(0)
2
) as functions of the parameterσc: Rs—“h”;

Ä exp(− ν(0)
2
)—“s.”

From a physical point of view it is important to learn about the behaviour of the quantity
Ä exp(− ν(0)

2 ) as a function of the central valueσc. That quantity may be considered the
energy of one boson in the gravitational field yielded by the rest matter (in the Einstein
frame). Figure 5 clearly shows that the quantityÄ exp(− ν(0)

2 ) increases along withσc. Such
behaviour should be expected, because the energy of the system has to increase with the
central densityσc of the star.

6. CONCLUSION

Based on CANM an iteration method for solving the nonlinear BVP describing a static
spherically symmetric boson–fermion star is developed.

A linearization of the main equations of the star reduces the original two-parametric
nonlinear spectral problem to three two-point linear vector BVPs and a linear system of
algebraic equations for the spectral parameters (the radius of the starRs and the frequency
Ä of the bosonic field). A spline-collocation scheme of fourth order of approximation is
used to solve these BVPs numerically.

Our basic physical result is that the structure and properties of the star in the presence of
a massive dilaton field depend essentially on both its fermionic and its bosonic components.
This shows that a careful investigation of these properties may provide ways to discover
physical effects of the hypothetical boson fields and dilaton field in stars.

APPENDIX

For the reader’s convenience, we briefly explain the main ideas of CANM.
CANM can be treated as a particular case of the continuous analogues of iteration meth-

ods, strictly formulated and studied by M. K. Gavurin in 1958 (see the review in [41]).
Among the number of papers devoted to the theoretical development and applications of
CANM to solving wide classes of nonlinear equations, we indicate the basic papers [29–33]
as well as the reviews [34, 35].

Let us consider the nonlinear equation

χ(y) = 0, (A.1)
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whereχ(y) is an operator defined in a Banach spaceY. We suppose that Eq. (A.1) has an
isolated exact solutiony∗ ∈ Y. Let the elementy0∈ Y (an initial approximation toy∗) be
given. To solve Eq. (A.1), we can use an iteration process, usually taking it in the form

yn+1 = yn + ψ(yn), n = 0, 1, 2, . . ..

Here,n indicates the number of iterations andψ is an appropriate function, which carries
Y into itself and has the same zeroes asχ .

The choice of the functionψ(y) depends on the kind of concrete iteration method used.
According to Gavurin’s idea, for each iteration process of such kind it is possible to

formulate the corresponding continuous analogue in the following way. Let us consider
an abstract functiony(t) of the independent continuous variablet ∈ [0,∞) instead of the
sequencey0, y1, . . . , yn, . . ., and suppose thaty(tn) = yn for eachn. Then, we can introduce
the derivativeẏ(t) instead of the incrementyn+1− yn and replace (A.1) with the abstract
initial value problem on the intervalt ∈ [0,∞)

ẏ(t) = ψ(y), y(0) = y0. (A.2)

Such a transition from a difference equation to a differential equation has many advan-
tages, both in pure theoretical and in applied aspects.

In the case of Newton’s method, we setψ(y) = −χ ′(y)−1χ(y), whereχ ′(y) is the
corresponding Frech´et derivative ofχ(y). Then, the main equation of CANM, arising from
(A.2), can be rewritten in the form

χ ′(y)ẏ = −χ(y). (A.3)

Obviously, the above ODE has a significant first integral of the kind

χ(y(t)) = χ(y0)e
−t , (A.4)

which means thatχ(y(t))→ 0 whent →∞.
Various theorems, based on (A.4), concerning the convergence of a pathy(t) to the

exact solutiony∗ have been proved. For example, a theorem [34] which guarantees the
convergence of CANM for a simple BVP is cited below.

The following BVP is considered:

−y′′ + f (x, y) = 0, x ∈ (0, 1), (A.5)

y(0) = 0, y(1) = 0. (A.6)

THEOREMA.1. Let the BVP(A.5), (A.6) have an isolated solution y∗(x) and

(i) the function f(x, y) have continuous partial derivatives up to the second order in
some domain D;

(ii) the linear BVP

−w′′ + f ′y(x, y)w = 0, x ∈ (0, 1),
w(0) = 0, w(1) = 0

have only a trivial solutionw(x) ≡ 0 for every smooth function y(x) ∈ D;
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(iii) the initial approximation y0(x) ∈ D be a smooth enough function satisfying

‖−y′′0 + f (x, y0‖ ≤ ε for ε > 0.

Then the system

−w′′ + f ′y(x, y)w = y′′ − f (x, y), ẏ = w,

with BCsw(0, t) = 0, w(1, t) = 0,and an initial condition y(x, 0) = y0(x),has in[0, 1] ∪
[0,∞) a unique solution, satisfying the relation

lim
t→∞‖y(x, t)− y∗(x)‖C2[0,1] = 0.

The numerical solution of CANM equation (A.3) is based on an appropriate scheme for
discretization, which has to be stable for the asymptotic stability of the pathy(t). The one
most frequently used is Euler’s scheme (see the details in the above cited papers). At first,
the linearized equation

χ ′(yn)wn = −χ(yn), (A.7)

is solved with respect to the incrementwn, and then the next approximation is obtained via
the formula

yn+1 = yn + τnwn. (A.8)

Here, 0< τn ≤ 1 is an iteration parameter. Whenτn ≡ 1, the classical Newton method
is obtained. We note that the choice ofτn is important for the rapid convergence of the
process. It is possible to choose this parameter so that the range of convergence is wider in
comparison to the classical Newton method [33, 37].

Theorems regarding the convergence of iterations (A.7), (A.8) for wide enough hypothe-
ses, as well as essential generalizations of CANM, are discussed in the above cited papers.
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